36 research outputs found

    Extreme magnification of an individual star at redshift 1.5 by a galaxy-cluster lens

    Get PDF
    Galaxy-cluster gravitational lenses can magnify background galaxies by a total factor of up to ~50. Here we report an image of an individual star at redshift z = 1.49 (dubbed MACS J1149 Lensed Star 1) magnified by more than ×2,000. A separate image, detected briefly 0.26″ from Lensed Star 1, is probably a counterimage of the first star demagnified for multiple years by an object of ≳3 solar masses in the cluster. For reasonable assumptions about the lensing system, microlensing fluctuations in the stars’ light curves can yield evidence about the mass function of intracluster stars and compact objects, including binary fractions and specific stellar evolution and supernova models. Dark-matter subhaloes or massive compact objects may help to account for the two images’ long-term brightness ratio

    A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1

    Get PDF
    We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K d of Ăą ∌1/4100 nM for each, and is 6-to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects

    A search for galaxies in and around an HI overdense region at z = 5

    No full text
    We present the discovery of a large-scale structure of emission-line galaxies at redshift z=4.86 behind a massive cluster of galaxies, A1689. Previous spectroscopic observations of a galaxy, A1689-7.1 at z=4.87, near this structure, revealed a possible overdense region of inter-galactic medium (IGM) around the galaxy, which extends at least ~80 comoving Mpc along the line of sight. In order to investigate whether this z~5 IGM overdense region contains a galaxy overdensity, we undertook narrow- and broad-band imaging observations around A1689-7.1 with Subaru/Suprime-Cam. We detected 51 candidate Ly-alpha emitters at redshift z=4.86+-0.03 in the 32 x 24 arcmin^2 field of view. After correction for lensing by the foreground cluster, we found a large-scale (~20 x 60 comoving Mpc) overdense region of galaxies around A1689-7.1 in the source plane at z=4.86. The densest peak in this region has an overdensity of delta~4, suggesting that this structure is probably a good candidate for a protocluster. A1689-7.1 is located at the edge of this region, where the local galaxy density is ~1.6 times the mean density and is close to the density contrast in the IGM along the line of sight to A1689-7.1 estimated from the optical depth. The overdensities of galaxies we have found may suggest that at least some parts of the IGM overdense region have already started to form galaxies and moreover they relate to the formation of a protocluster. Although we lack information on the three dimensional distributions of both IGM and galaxy overdense regions, the similarity of the scales of both regions may suggest that the two are parts of a single large-scale structure, which would be an large edge-on sheet along the line of sight with a size of ~20 x 60 x 80 comoving Mpc.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    Spectroscopic observations of PHz G237.01+42.50: A galaxy protocluster at z = 2.16 in the Cosmos field

    Get PDF
    International audienceThe Planck satellite has identified more than 2000 protocluster candidates with extreme star formation rates (SFRs). Here, we present the spectroscopic identification of a Planck-selected protocluster located in the Cosmos field, PHz G237.01+42.50. PHz G237.01+42.50 contains a galaxy overdensity of 31 spectroscopically identified galaxies at z ≃ 2.16 (significant at 5.4σ) in a 10â€Č × 11â€Č region. The overdensity contains two substructures or protoclusters at ⟹z⟩ ≃ 2.16 and 2.195 with estimated halo masses at z = 0 of ∌5–6 × 1014 M⊙, roughly consistent with Virgo-type clusters. The overdensity total SFR, ∌4000 M⊙ yr−1, is higher than predicted by simulations but much smaller than the SFR derived from the Planck data (i.e., 10 173 M⊙ yr−1). The analysis of the Herschel data in the field, in combination with the available ancillary data, shows that such a difference is due to an effect of source alignment along the line of sight that produces a 5σ overdensity of red Herschel sources in the field. We analyze the members’ ultraviolet (UV) spectra and UV-far-infrared spectral energy distributions to derive their SFR, stellar mass, and metallicity. Galaxy members include blue star-forming galaxies and Active galactic nuclei (AGN) with SFRs and stellar masses consistent with the main sequence. Active galactic nuclei, identified through optical spectroscopy or X-ray data, represent a significant fraction (20 ± 10%) of all members of the protocluster at z = 2.16, and they are powerful enough to produce radiative feedback. The core of this protocluster, besides being denser, includes members that are, on average, more massive and star-forming and contains a larger fraction of AGN and Herschel-detected galaxies than the full sample, suggesting an environmental effect on galaxy growth. A comparison between PHz G237.01+42.50 and other protoclusters in the literature at similar redshifts reveals some common traits and differences that reflect both observational biases and a diversity in intrinsic properties that is not yet fully understood.Key words: large-scale structure of Universe / galaxies: star formation / galaxies: clusters: general / galaxies: high-redshift / submillimeter: galaxies⋆ Based on LBT/LUCI spectroscopic observations

    Panic! at the Disks: First Rest-frame Optical Observations of Galaxy Structure at z > 3 with JWST in the SMACS 0723 Field

    Get PDF
    We present early results regarding the morphological and structural properties of galaxies seen with the James Webb Space Telescope (JWST) at z > 3 in the Early Release Observations toward the SMACS 0723 cluster field. Using JWST we investigate, for the first time, the optical morphologies of a significant number of z > 3 galaxies with accurate photometric redshifts in this field to determine the form of galaxy structure in the relatively early universe. We use visual morphologies and Morfometryka measures to perform quantitative morphology measurements, both parametric with light profile fitting (SĂ©rsic indices) and nonparametric (concentration, asymmetry, and smoothness (CAS) values). Using these, we measure the relative fraction of disk, spheroidal, and peculiar galaxies at 3 1.5 disk galaxies dominate the overall fraction of morphologies, with a factor of ∌10 relative higher number of disk galaxies than seen by the Hubble Space Telescope at these redshifts. Our visual morphological estimates of galaxies align closely with their locations in CAS parameter space and their SĂ©rsic indices. © 2022. The Author(s). Published by the American Astronomical Society.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore